73 research outputs found

    Capecitabine plus oxaliplatin as first-line treatment in patients with advanced biliary system adenocarcinoma: a prospective multicentre phase II trial

    Get PDF
    This prospective multicentre phase II study characterises the toxicity and activity of first-line capecitabine and oxaliplatin combination therapy (CAPOX) in advanced biliary system adenocarcinomas. Patients received oxaliplatin (130 mg m−2, day 1) plus capecitabine (1000 mg m−2 b.i.d., days 1–14) every 3 weeks. Patients were stratified prospectively into two groups based on location of the primary (gallbladder carcinoma (GBC) or extrahepatic cholangiocarcinoma (ECC) versus intrahepatic mass-forming type cholangiocarcinoma (ICC)). Sixty-five patients were evaluable. The response rate in 47 patients with GBC/ECC was 27% (4% complete responses), and in 23 patients (49%) stable disease (SD) was encountered. In 18 patients with ICC, we observed no objective responses, but 6 patients (33%) had SD. Median survival was 12.8 months (95% CI, 10.0–15.6) for patients with GBC or ECC (GBC: 8.2 months; 95% CI, 4.3–11.7; ECC: 16.8 months; 95% CI, 12.7–20.5), and 5.2 months (95% CI, 0.6–9.8) for ICC patients. In both cohorts, therapy was well tolerated. The most common grade 3–4 toxicity was peripheral sensory neuropathy (11 patients). Our data suggest that the CAPOX regimen is a well-tolerated and active treatment option for advanced ECC and GBC but might produce poorer results for ICC

    Biogenesis and functions of bacterial S-layers.

    Get PDF
    The outer surface of many archaea and bacteria is coated with a proteinaceous surface layer (known as an S-layer), which is formed by the self-assembly of monomeric proteins into a regularly spaced, two-dimensional array. Bacteria possess dedicated pathways for the secretion and anchoring of the S-layer to the cell wall, and some Gram-positive species have large S-layer-associated gene families. S-layers have important roles in growth and survival, and their many functions include the maintenance of cell integrity, enzyme display and, in pathogens and commensals, interaction with the host and its immune system. In this Review, we discuss our current knowledge of S-layer and related proteins, including their structures, mechanisms of secretion and anchoring and their diverse functions

    DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity

    Get PDF
    Oxidative stress and lipid peroxidation (LPO) induced by inflammation, excess metal storage and excess caloric intake cause generalized DNA damage, producing genotoxic and mutagenic effects. The consequent deregulation of cell homeostasis is implicated in the pathogenesis of a number of malignancies and degenerative diseases. Reactive aldehydes produced by LPO, such as malondialdehyde, acrolein, crotonaldehyde and 4-hydroxy-2-nonenal, react with DNA bases, generating promutagenic exocyclic DNA adducts, which likely contribute to the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO. However, reactive aldehydes, when added to tumor cells, can exert an anticancerous effect. They act, analogously to other chemotherapeutic drugs, by forming DNA adducts and, in this way, they drive the tumor cells toward apoptosis. The aldehyde-DNA adducts, which can be observed during inflammation, play an important role by inducing epigenetic changes which, in turn, can modulate the inflammatory process. The pathogenic role of the adducts formed by the products of LPO with biological macromolecules in the breaking of immunological tolerance to self antigens and in the development of autoimmunity has been supported by a wealth of evidence. The instrumental role of the adducts of reactive LPO products with self protein antigens in the sensitization of autoreactive cells to the respective unmodified proteins and in the intermolecular spreading of the autoimmune responses to aldehyde-modified and native DNA is well documented. In contrast, further investigation is required in order to establish whether the formation of adducts of LPO products with DNA might incite substantial immune responsivity and might be instrumental for the spreading of the immunological responses from aldehyde-modified DNA to native DNA and similarly modified, unmodified and/or structurally analogous self protein antigens, thus leading to autoimmunity

    Expert consensus document:Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA)

    Get PDF
    Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with features of biliary tract differentiation. CCA is the second most common primary liver tumour and the incidence is increasing worldwide. CCA has high mortality owing to its aggressiveness, late diagnosis and refractory nature. In May 2015, the "European Network for the Study of Cholangiocarcinoma" (ENS-CCA: www.enscca.org or www.cholangiocarcinoma.eu) was created to promote and boost international research collaboration on the study of CCA at basic, translational and clinical level. In this Consensus Statement, we aim to provide valuable information on classifications, pathological features, risk factors, cells of origin, genetic and epigenetic modifications and current therapies available for this cancer. Moreover, future directions on basic and clinical investigations and plans for the ENS-CCA are highlighted
    • …
    corecore